Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Radiat Res ; 201(2): 174-187, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38329819

ABSTRACT

Resistance to radiation remains a significant clinical challenge in non-small cell lung carcinoma (NSCLC). It is therefore important to identify the underlying molecular and cellular features that drive acquired resistance. We generated genetically matched NSCLC cell lines to investigate characteristics of acquired resistance. Murine Lewis lung carcinoma (LLC) and human A549 cells acquired an approximate 1.5-2.5-fold increase in radiation resistance as compared to their parental match, which each had unique intrinsic radio-sensitivities. The radiation resistance (RR) was reflected in higher levels of DNA damage and repair marker γH2AX and reduced apoptosis induction after radiation. Morphologically, we found that radiation resistance A549 (A549-RR) cells exhibited a greater nucleus-to-cytosol (N/C) ratio as compared to its parental counterpart. Since the N/C ratio is linked to the differentiation state, we next investigated the epithelial-to-mesenchymal transition (EMT) phenotype and cellular plasticity. We found that A549 cells had a greater radiation-induced plasticity, as measured by E-cadherin, vimentin and double-positive (DP) modulation, as compared to LLC. Additionally, migration was suppressed in A549-RR cells, as compared to A549 cells. Subsequently, we confirmed in vivo that the LLC-RR and A549-RR cells are also more resistance to radiation than their isogenic-matched counterpart. Moreover, we found that the acquired radiation resistance also induced resistance to cisplatin, but not carboplatin or oxaliplatin. This cross-resistance was attributed to induced elevation of thiol levels. Gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine (BSO) sensitized the resistant cells to cisplatin by decreasing the amount of thiols to levels prior to obtaining acquired radiation resistance. By generating radiation-resistance genetically matched NSCLC we were able to identify and overcome cisplatin cross-resistance. This is an important finding arguing for combinatorial treatment regimens including glutathione pathway disruptors in patients with the potential of improving clinical outcomes in the future.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carboplatin , Buthionine Sulfoximine/pharmacology , Buthionine Sulfoximine/therapeutic use , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
2.
Paediatr Respir Rev ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38233229

ABSTRACT

Race-based and skin pigmentation-related inaccuracies in pulse oximetry have recently been highlighted in several large electronic health record-based retrospective cohort studies across diverse patient populations and healthcare settings. Overestimation of oxygen saturation by pulse oximeters, particularly in hypoxic states, is disparately higher in Black compared to other racial groups. Compared to adult literature, pediatric studies are relatively few and mostly reliant on birth certificates or maternal race-based classification of comparison groups. Neonates, infants, and young children are particularly susceptible to the adverse life-long consequences of hypoxia and hyperoxia. Successful neonatal resuscitation, precise monitoring of preterm and term neonates with predominantly lung pathology, screening for congenital heart defects, and critical decisions on home oxygen, ventilator support and medication therapies, are only a few examples of situations that are highly reliant on the accuracy of pulse oximetry. Undetected hypoxia, especially if systematically different in certain racial groups may delay appropriate therapies and may further perpetuate health care disparities. The role of biological factors that may differ between racial groups, particularly skin pigmentation that may contribute to biased pulse oximeter readings needs further evaluation. Developmental and maturational changes in skin physiology and pigmentation, and its interaction with the operating principles of pulse oximetry need further study. Importantly, clinicians should recognize the limitations of pulse oximetry and use additional objective measures of oxygenation (like co-oximetry measured arterial oxygen saturation) where hypoxia is a concern.

3.
Biomed Opt Express ; 14(12): 6114-6126, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38420330

ABSTRACT

We used diffuse reflectance spectroscopy to quantify tissue absorption and scattering-based parameters in similarly sized tumors derived from a panel of four isogenic murine breast cancer cell lines (4T1, 4T07, 168FARN, 67NR) that are each capable of accomplishing different steps of the invasion-metastasis cascade. We found lower tissue scattering, increased hemoglobin concentration, and lower vascular oxygenation in indolent 67NR tumors incapable of metastasis compared with aggressive 4T1 tumors capable of metastasis. Supervised learning statistical approaches were able to accurately differentiate between tumor groups and classify tumors according to their ability to accomplish each step of the invasion-metastasis cascade. We investigated whether the inhibition of metastasis-promoting genes in the highly metastatic 4T1 tumors resulted in measurable optical changes that made these tumors similar to the indolent 67NR tumors. These results demonstrate the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology and discriminate between indolent and aggressive tumors.

4.
Radiat Res ; 198(6): 545-552, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36240754

ABSTRACT

Radiation therapy plays an important role in cancer treatment, as it is an established method used as part of the treatment plan for the majority of cancer patients. Real-time monitoring of the effects of radiation on the tumor microenvironment can contribute to the development of better treatment plans. In this study, we use diffuse reflectance spectroscopy, a non-invasive optical fiber-based technique, to determine the effects of different doses of radiation on the tumor microenvironment, as well as to determine the sensitivity of diffuse reflectance spectroscopy to low doses of radiation that are used in the treatment of certain cancers. We injected 4T1 cells into 50 Balb/c mice to generate tumor xenografts. When the tumors grew to 200 mm3, we distributed the mice into a control group or one of three radiation groups: 1, 2, or 4 Gy/fraction, and they underwent treatment for five consecutive days. We measured the tumor volume and collected diffuse reflectance spectra every day, with optical measurements being acquired both before and one h postirradiation on the five days of treatment. Based on the diffusely reflected light, we quantified vascular oxygenation, total hemoglobin content, and tissue scattering within these tumors. There was a significant increase in tumor vascular oxygenation, which was primarily due to an increase in oxygenated hemoglobin, in response to a 1 Gy/fraction of radiation, while there was a decrease in tissue scattering in response to all doses of radiation. Immunohistochemical analysis revealed that tumor cell proliferation and apoptosis were higher in irradiated groups compared to the control group. Our findings show that diffuse reflectance spectroscopy is sensitive to microenvironmental changes in tumors treated with doses of radiation as low as 1 Gy/fraction.


Subject(s)
Tumor Microenvironment , Animals , Humans , Mice , Hemoglobins , Spectrum Analysis
5.
Theranostics ; 12(12): 5351-5363, 2022.
Article in English | MEDLINE | ID: mdl-35910801

ABSTRACT

The accurate analytical characterization of metastatic phenotype at primary tumor diagnosis and its evolution with time are critical for controlling metastatic progression of cancer. Here, we report a label-free optical strategy using Raman spectroscopy and machine learning to identify distinct metastatic phenotypes observed in tumors formed by isogenic murine breast cancer cell lines of progressively increasing metastatic propensities. Methods: We employed the 4T1 isogenic panel of murine breast cancer cells to grow tumors of varying metastatic potential and acquired label-free spectra using a fiber probe-based portable Raman spectroscopy system. We used MCR-ALS and random forests classifiers to identify putative spectral markers and predict metastatic phenotype of tumors based on their optical spectra. We also used tumors derived from 4T1 cells silenced for the expression of TWIST, FOXC2 and CXCR3 genes to assess their metastatic phenotype based on their Raman spectra. Results: The MCR-ALS spectral decomposition showed consistent differences in the contribution of components that resembled collagen and lipids between the non-metastatic 67NR tumors and the metastatic tumors formed by FARN, 4T07, and 4T1 cells. Our Raman spectra-based random forest analysis provided evidence that machine learning models built on spectral data can allow the accurate identification of metastatic phenotype of independent test tumors. By silencing genes critical for metastasis in highly metastatic cell lines, we showed that the random forest classifiers provided predictions consistent with the observed phenotypic switch of the resultant tumors towards lower metastatic potential. Furthermore, the spectral assessment of lipid and collagen content of these tumors was consistent with the observed phenotypic switch. Conclusion: Overall, our findings indicate that Raman spectroscopy may offer a novel strategy to evaluate metastatic risk during primary tumor biopsies in clinical patients.


Subject(s)
Neoplasms, Second Primary , Spectrum Analysis, Raman , Animals , Cell Line, Tumor , Melanoma , Mice , Neoplasm Metastasis , Phenotype , Skin Neoplasms , Melanoma, Cutaneous Malignant
6.
BMC Immunol ; 23(1): 20, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35461243

ABSTRACT

BACKGROUND: Immunotherapy in colorectal cancer (CRC) regulates specific immune checkpoints and, when used in combination with chemotherapy, can improve patient prognosis. One specific immune checkpoint is the recruitment of circulating monocytes that differentiate into tumor-associated macrophages (TAMs) and promote tumor angiogenesis. Changes in vascularization can be non-invasively assessed via diffuse reflectance spectroscopy using hemoglobin concentrations and oxygenation in a localized tumor volume. In this study, we examine whether blockade of monocyte recruitment via CCL2 (macrophage chemoattractant protein-1) leads to enhanced sensitivity of 5-fluorouracil (5-FU) in a CT26-Balb/c mouse model of CRC. It was hypothesized that the blockade of TAMs will alter tumor perfusion, increasing chemotherapy response. A subcutaneous tumor model using Balb/c mice injected with CT26 colon carcinoma cells received either a saline or isotype control, anti-CCL2, 5-FU, or a combination of anti-CCL2 and 5-FU. RESULTS: Findings show that 12 days post-treatment, monocyte recruitment was significantly reduced by approximately 61% in the combination group. This shows that the addition of anti-CCL2 to 5-FU slowed the fold-change (change from the original measurement to the final measurement) in tumor volume from Day 0 to Day 12 (~ 5 fold). Modest improvements in oxygen saturation (~ 30%) were observed in the combination group. CONCLUSION: The findings in this work suggest that the blockade of CCL2 is sufficient in the reduction of TAMs that are recruited into the tumor microenvironment and has the ability to modestly alter tumor perfusion during early-tumor response to treatment even though the overall benefit is relatively modest.


Subject(s)
Carcinoma , Colonic Neoplasms , Animals , Carcinoma/drug therapy , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Fluorouracil/therapeutic use , Humans , Immunotherapy , Macrophages , Mice , Mice, Inbred BALB C , Spectrum Analysis , Tumor Microenvironment
7.
Cancer Res ; 81(22): 5745-5755, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34645610

ABSTRACT

Cancer immunotherapy provides durable clinical benefit in only a small fraction of patients, and identifying these patients is difficult due to a lack of reliable biomarkers for prediction and evaluation of treatment response. Here, we demonstrate the first application of label-free Raman spectroscopy for elucidating biomolecular changes induced by anti-CTLA4 and anti-PD-L1 immune checkpoint inhibitors (ICI) in the tumor microenvironment (TME) of colorectal tumor xenografts. Multivariate curve resolution-alternating least squares (MCR-ALS) decomposition of Raman spectral datasets revealed early changes in lipid, nucleic acid, and collagen content following therapy. Support vector machine classifiers and random forests analysis provided excellent prediction accuracies for response to both ICIs and delineated spectral markers specific to each therapy, consistent with their differential mechanisms of action. Corroborated by proteomics analysis, our observation of biomolecular changes in the TME should catalyze detailed investigations for translating such markers and label-free Raman spectroscopy for clinical monitoring of immunotherapy response in cancer patients. SIGNIFICANCE: This study provides first-in-class evidence that optical spectroscopy allows sensitive detection of early changes in the biomolecular composition of tumors that predict response to immunotherapy with immune checkpoint inhibitors.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Colonic Neoplasms/immunology , Immune Checkpoint Inhibitors/pharmacology , Machine Learning , Spectrum Analysis, Raman/methods , Tumor Microenvironment , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Immunotherapy/methods , Mice , Mice, Inbred BALB C , Tumor Cells, Cultured
8.
Biomed Opt Express ; 12(7): 3982-3991, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34457393

ABSTRACT

Immune checkpoint inhibitors have revolutionized cancer treatment. However, there are currently no methods for noninvasively and nondestructively evaluating tumor response to immune checkpoint inhibitors. We used diffuse reflectance spectroscopy to monitor in vivo tumor microenvironmental changes in response to immune checkpoint inhibitors in a CT26 murine colorectal cancer model. Mice growing CT26 tumor xenografts were treated with either anti-PD-L1, anti-CTLA-4, a combination of both inhibitors, or isotype control on 3 separate days. Monotherapy with either anti-PD-L1 or anti-CTLA-4 led to a large increase in tumor vascular oxygenation within the first 6 days. Reoxygenation in anti-CTLA-4-treated tumors was due to a combination of increased oxygenated hemoglobin and decreased deoxygenated hemoglobin, pointing to a possible change in tumor oxygen consumption following treatment. Within the anti-PD-L1-treated tumors, reoxygenation was primarily due to an increase in oxygenated hemoglobin with the minimal change in deoxygenated hemoglobin, indicative of a likely increase in tumor perfusion. The tumors in the combined treatment group did not show any significant changes in tumor oxygenation following therapy. These studies demonstrate the sensitivity of diffuse reflectance spectroscopy to tumor microenvironmental changes following immunotherapy and the potential of such non-invasive techniques to determine early tumor response to immune checkpoint inhibitors.

9.
J Med Imaging (Bellingham) ; 8(2): 023504, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33928181

ABSTRACT

Purpose: The objective of this study is to quantitatively evaluate terahertz (THz) imaging for differentiating cancerous from non-cancerous tissues in mammary tumors developed in response to injection of N-ethyl-N-nitrosourea (ENU) in Sprague Dawley rats. Approach: While previous studies have investigated the biology of mammary tumors of this model, the current work is the first study to employ an imaging modality to visualize these tumors. A pulsed THz imaging system is utilized to experimentally collect the time-domain reflection signals from each pixel of the rat's excised tumor. A statistical segmentation algorithm based on the expectation-maximization (EM) classification method is implemented to quantitatively assess the obtained THz images. The model classification of cancer is reported in terms of the receiver operating characteristic (ROC) curves and the areas under the curves. Results: The obtained low-power microscopic images of 17 ENU-rat tumor sections exhibited the presence of healthy connective tissue adjacent to cancerous tissue. The results also demonstrated that high reflection THz signals were received from cancerous compared with non-cancerous tissues. Decent tumor classification was achieved using the EM method with values ranging from 83% to 96% in fresh tissues and 89% to 96% in formalin-fixed paraffin-embedded tissues. Conclusions: The proposed ENU breast tumor model of Sprague Dawley rats showed a potential to obtain cancerous tissues, such as human breast tumors, adjacent to healthy tissues. The implemented EM classification algorithm quantitatively demonstrated the ability of THz imaging in differentiating cancerous from non-cancerous tissues.

10.
JCSM Rapid Commun ; 4(1): 3-15, 2021.
Article in English | MEDLINE | ID: mdl-33693448

ABSTRACT

Cachexia presents in 80% of advanced cancer patients; however, cardiac atrophy in cachectic patients receives little attention. This cardiomyopathy contributes to increased occurrence of adverse cardiac events compared to age-matched population norms. Research on cardiac atrophy has focused on remodeling; however, alterations in metabolic properties may be a primary contributor. PURPOSE: Determine how cancer-induced cardiac atrophy alters mitochondrial turnover, mitochondrial mRNA translation machinery and in-vitro oxidative characteristics. METHODS: Lewis lung carcinoma (LLC) tumors were implanted in C57BL6/J mice and grown for 28days to induce cardiac atrophy. Endogenous metabolic species, and markers of mitochondrial function were assessed. H9c2 cardiomyocytes were cultured in LLC-conditioned media with(out) the antioxidant MitoTempo. Cells were analyzed for ROS, oxidative capacity, and hypoxic resistance. RESULTS: LLC heart weights were ~10% lower than controls. LLC hearts demonstrated ~15% lower optical redox ratio (FAD/FAD+NADH) compared to PBS controls. When compared to PBS, LLC hearts showed ~50% greater COX-IV and VDAC, attributed to ~50% lower mitophagy markers. mt-mRNA translation machinery was elevated similarly to markers of mitochondrial content. mitochondrial DNA-encoded Cytb was ~30% lower in LLC hearts. ROS scavengers GPx-3 and GPx-7 were ~50% lower in LLC hearts. Treatment of cardiomyocytes with LLC-conditioned media resulted in higher ROS (25%), lower oxygen consumption rates (10% at basal, 75% at maximal), and greater susceptibility to hypoxia (~25%) -- which was reversed by MitoTempo. CONCLUSION: These results substantiate metabolic cardiotoxic effects attributable to tumor-associated factors and provide insight into interactions between mitochondrial mRNA translation, ROS mitigation, oxidative capacity and hypoxia resistance.

11.
Sci Rep ; 11(1): 3649, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574480

ABSTRACT

Heat stress (HS) is devastating to the poultry industry due to its adverse effects on animal well-being and performance. The effects of heat stress are typically measured using a portable i-STAT blood analyzer that quantifies circulatory hemoglobin concentration and other blood chemistry parameters. Here, we used diffuse reflectance spectroscopy (DRS) as a novel non-invasive method to directly determine changes in hematological parameters in the breast tissues of live heat-stressed broilers. Three-week-old male broilers were randomly subjected to two environmental conditions (thermoneutral, TN, 24 °C vs. cyclic heat stress, HS, 35 °C, 12 h/day). Optical spectra were acquired using DRS to monitor breast hemoglobin (Hb) concentration and vascular oxygen saturation (sO2) at three time points: at baseline prior to heat stress, 2 days, and 21 days after initiation of HS. While i-STAT did not demonstrate a discernible change due to HS in circulatory hemoglobin, DRS found a significant decrease in breast Hb and sO2 after exposure to chronic HS. The decrease in sO2 was found to be due to a decrease in oxygenated hemoglobin concentration, indicating a large increase in oxygen consumption in heat-stressed broilers. Our results demonstrate that DRS could potentially be used to study the effects of HS directly in specific organs of interest, such as the breast and thigh, to improve meat quality.


Subject(s)
Breast/metabolism , Heat-Shock Response , Hemoglobins/metabolism , Hot Temperature/adverse effects , Animal Feed , Animals , Chickens/metabolism , Female , Meat/analysis , Poultry , Spectrum Analysis
12.
Neoplasia ; 23(1): 49-57, 2021 01.
Article in English | MEDLINE | ID: mdl-33220616

ABSTRACT

Fractionated radiation therapy is believed to reoxygenate and subsequently radiosensitize surviving hypoxic cancer cells. Measuring tumor reoxygenation between radiation fractions could conceivably provide an early biomarker of treatment response. However, the relationship between tumor reoxygenation and local control is not well understood. We used noninvasive optical fiber-based diffuse reflectance spectroscopy to monitor radiation-induced changes in hemoglobin oxygen saturation (sO2) in tumor xenografts grown from two head and neck squamous cell carcinoma cell lines - UM-SCC-22B and UM-SCC-47. Tumors were treated with 4 doses of 2 Gy over 2 consecutive weeks and diffuse reflectance spectra were acquired every day during the 2-week period. There was a statistically significant increase in sO2 in the treatment-responsive UM-SCC-22B tumors immediately following radiation. This reoxygenation trend was due to an increase in oxygenated hemoglobin (HbO2) and disappeared over the next 48 h as sO2 returned to preradiation baseline values. Conversely, sO2 in the relatively radiation-resistant UM-SCC-47 tumors increased after every dose of radiation and was driven by a significant decrease in deoxygenated hemoglobin (dHb). Immunohistochemical analysis revealed significantly elevated expression of hypoxia-inducible factor (HIF-1) in the UM-SCC-47 tumors prior to radiation and up to 48 h postradiation compared with the UM-SCC-22B tumors. Our observation of a decrease in dHb, a corresponding increase in sO2, as well as greater HIF-1α expression only in UM-SCC-47 tumors strongly suggests that the reoxygenation within these tumors is due to a decrease in oxygen consumption in the cancer cells, which could potentially play a role in promoting radiation resistance.


Subject(s)
Oxidation-Reduction/radiation effects , Oxygen Consumption/radiation effects , Oxygen/analysis , Oxygen/metabolism , Radiation Tolerance , Radiation , Spectrum Analysis , Animals , Biomarkers , Cell Line, Tumor , Disease Models, Animal , Dose Fractionation, Radiation , Dose-Response Relationship, Radiation , Humans , Immunohistochemistry , Mice , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplasms/radiotherapy , Optical Imaging , Radiotherapy , Spectrum Analysis/methods , Xenograft Model Antitumor Assays
14.
J Biomed Opt ; 25(3): 1-16, 2020 03.
Article in English | MEDLINE | ID: mdl-32141266

ABSTRACT

SIGNIFICANCE: Many studies in colorectal cancer (CRC) use murine ectopic tumor models to determine response to treatment. However, these models do not replicate the tumor microenvironment of CRC. Physiological information of treatment response derived via diffuse reflectance spectroscopy (DRS) from murine primary CRC tumors provide a better understanding for the development of new drugs and dosing strategies in CRC. AIM: Tumor response to chemotherapy in a primary CRC model was quantified via DRS to extract total hemoglobin content (tHb), oxygen saturation (StO2), oxyhemoglobin, and deoxyhemoglobin in tissue. APPROACH: A multimodal DRS and imaging probe (0.78 mm outside diameter) was designed and validated to acquire diffuse spectra longitudinally-via endoscopic guidance-in developing colon tumors under 5-fluoruracil (5-FU) maximum-tolerated (MTD) and metronomic regimens. A filtering algorithm was developed to compensate for positional uncertainty in DRS measurements Results: A maximum increase in StO2 was observed in both MTD and metronomic chemotherapy-treated murine primary CRC tumors at week 4 of neoadjuvant chemotherapy, with 21 ± 6 % and 17 ± 6 % fold changes, respectively. No significant changes were observed in tHb. CONCLUSION: Our study demonstrates the feasibility of DRS to quantify response to treatment in primary CRC models.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Disease Models, Animal , Fluorouracil/therapeutic use , Optical Imaging/methods , Spectrophotometry/methods , Animals , Biomarkers, Tumor/analysis , Colorectal Neoplasms/chemistry , Disease Progression , Female , Hemoglobins/analysis , Mice , Mice, Inbred A , Oxygen/analysis , Precancerous Conditions/diagnosis
15.
Front Oncol ; 9: 1152, 2019.
Article in English | MEDLINE | ID: mdl-31750246

ABSTRACT

Radiation therapy is frequently the first line of treatment for over 50% of cancer patients. While great advances have been made in improving treatment response rates and reducing damage to normal tissue, radiation resistance remains a persistent clinical problem. While hypoxia or a lack of tumor oxygenation has long been considered a key factor in causing treatment failure, recent evidence points to metabolic reprogramming under well-oxygenated conditions as a potential route to promoting radiation resistance. In this review, we present recent studies from our lab and others that use high-resolution optical imaging as well as clinical translational optical spectroscopy to shine light on the biological basis of radiation resistance. Two-photon microscopy of endogenous cellular metabolism has identified key changes in both mitochondrial structure and function that are specific to radiation-resistant cells and help promote cell survival in response to radiation. Optical spectroscopic approaches, such as diffuse reflectance and Raman spectroscopy have demonstrated functional and molecular differences between radiation-resistant and sensitive tumors in response to radiation. These studies have uncovered key changes in metabolic pathways and present a viable route to clinical translation of optical technologies to determine radiation resistance at a very early stage in the clinic.

16.
Front Physiol ; 10: 1251, 2019.
Article in English | MEDLINE | ID: mdl-31632293

ABSTRACT

The incidence of woody breast (WB) is increasing on a global scale representing a significant welfare problem and economic burden to the poultry industry and for which there is no effective treatment due to its unknown etiology. In this study, using diffuse reflectance spectroscopy (DRS) coupled with iSTAT portable clinical analyzer, we provide evidence that the circulatory- and breast muscle-oxygen homeostasis is dysregulated [low oxygen and hemoglobin (HB) levels] in chickens with WB myopathy compared to healthy counterparts. Molecular analysis showed that blood HB subunit Mu (HBM), Zeta (HBZ), and hephaestin (HEPH) expression were significantly down regulated; however, the expression of the subunit rho of HB beta (HBBR) was upregulated in chicken with WB compared to healthy counterparts. The breast muscle HBBR, HBE, HBZ, and hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) mRNA abundances were significantly down regulated in WB-affected compared to normal birds. The expression of HIF-1α at mRNA and protein levels was significantly induced in breasts of WB-affected compared to unaffected birds confirming a local hypoxic status. The phosphorylated levels of the upstream mediators AKT at Ser473 site, mTOR at Ser2481 site, and PI3K P85 at Tyr458 site, as well as their mRNA levels were significantly increased in breasts of WB-affected birds. In attempt to identify a nutritional strategy to reduce WB incidence, male broiler chicks (Cobb 500, n = 576) were randomly distributed into 48 floor pens and subjected to six treatments (12 birds/pen; 8 pens/treatment): a nutrient adequate control group (PC), the PC supplemented with 0.3% myo-inositol (PC + MI), a negative control (NC) deficient in available P and Ca by 0.15 and 0.16%, respectively, the NC fed with quantum blue (QB) at 500 (NC + 500 FTU), 1,000 (NC + 1,000 FTU), or 2,000 FTU/kg of feed (NC + 2,000 FTU). Although QB-enriched diets did not affect growth performances (FCR and FE), it did reduce the severity of WB by 5% compared to the PC diet. This effect is mediated by reversing the expression profile of oxygen homeostasis-related genes; i.e., significant down regulation of HBBR and upregulation of HBM, HBZ, and HEPH in blood, as well as a significant upregulation of HBA1, HBBR, HBE, HBZ, and PHD2 in breast muscle compared to the positive control.

17.
Exp Gerontol ; 121: 62-70, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30928679

ABSTRACT

Being both advanced in age and obese each contribute to cardiac hypertrophy in a unique manner. Electron transport complexes I and IV are implicated in deficient electron transport during cardiomyopathies and contain the majority of protein subunits that are transcribed and translated by machinery localized within the mitochondria. PURPOSE: To assess myocardial mt-mRNA translation factors in relation to mitochondrial content and mtDNA-encoded protein using a mouse model of aged obesity and to test the relationship of mt-mRNA translation initiation factor 2 (mtIF2) to oxidative capacity and the cellular oxidation-reduction (redox) state in cardiomyocytes. METHODS: Male C56BL/6 J mice fed lean or high fat diet were aged to either ~3 months or ~22 months, the heart was excised and analyzed using immunoblot and qPCR to assess differences in mitochondrial mRNA translation machinery. Using H9c2 cardiomyocytes, mtIF2 was knocked-down and oxidative metabolic characteristics assessed including oxidation/reduction state, bioenergetic flux, and hypoxic resistance was tested. RESULTS: Aged, obese mouse hearts were ~40% larger than young, lean controls and contained ~50% less mtIF2 protein alongside ~25-50% lower content of Cytb, a protein encoded by mtDNA. Reducing the level of mtIF2 by shRNA is associated with ~15-20% lower content of OXPHOS complex I and IV, ~30% lower optical redox ratio, ~40% oxygen reserve capacity, and ~20% less cell survival following hypoxia. CONCLUSION: We present evidence of altered mt-mRNA translation during cardiac hypertrophy in aged obesity. We build on these results by demonstrating the necessity of mtIF2 in maintaining oxidative characteristics of cardiac muscle cells.


Subject(s)
Mitochondria, Heart/physiology , Myocardium/metabolism , RNA, Messenger/physiology , RNA, Mitochondrial/physiology , Aging/physiology , Animals , Body Weight/physiology , Down-Regulation/genetics , Male , Mice, Inbred C57BL , Mice, Obese , Mitochondrial Proteins/genetics , Obesity/metabolism , Oxidation-Reduction
18.
Cancer Res ; 79(8): 2054-2064, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30819665

ABSTRACT

Delay in the assessment of tumor response to radiotherapy continues to pose a major challenge to quality of life for patients with nonresponsive tumors. Here, we exploited label-free Raman spectroscopic mapping to elucidate radiation-induced biomolecular changes in tumors and uncovered latent microenvironmental differences between treatment-resistant and -sensitive tumors. We used isogenic radiation-resistant and -sensitive A549 human lung cancer cells and human head and neck squamous cell carcinoma (HNSCC) cell lines (UM-SCC-47 and UM-SCC-22B, respectively) to grow tumor xenografts in athymic nude mice and demonstrated the molecular specificity and quantitative nature of Raman spectroscopic tissue assessments. Raman spectra obtained from untreated and treated tumors were subjected to chemometric analysis using multivariate curve resolution-alternating least squares (MCR-ALS) and support vector machine (SVM) to quantify biomolecular differences in the tumor microenvironment. The Raman measurements revealed significant and reliable differences in lipid and collagen content postradiation in the tumor microenvironment, with consistently greater changes observed in the radiation-sensitive tumors. In addition to accurately evaluating tumor response to therapy, the combination of Raman spectral markers potentially offers a route to predicting response in untreated tumors prior to commencing treatment. Combined with its noninvasive nature, our findings provide a rationale for in vivo studies using Raman spectroscopy, with the ultimate goal of clinical translation for patient stratification and guiding adaptation of radiotherapy during the course of treatment. SIGNIFICANCE: These findings highlight the sensitivity of label-free Raman spectroscopy to changes induced by radiotherapy and indicate the potential to predict radiation resistance prior to commencing therapy.


Subject(s)
Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , Lung Neoplasms/pathology , Radiation Tolerance , Spectrum Analysis, Raman/methods , Tumor Microenvironment/radiation effects , Animals , Carcinoma, Squamous Cell/radiotherapy , Head and Neck Neoplasms/radiotherapy , Humans , Lung Neoplasms/radiotherapy , Mice , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Biomed Opt Express ; 9(11): 5269-5279, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30460127

ABSTRACT

An improved technique for fractal characterization called the modified blanket method is introduced that can quantify surrounding fractal structures on a pixel by pixel basis without artifacts associated with scale-dependent image features such as object size. The method interprets images as topographical maps, obtaining information regarding the local surface area as a function of image resolution. Local fractal dimension (FD) can be quantified from the power law exponent derived from the surface area and image resolution relationship. We apply this technique on simulated cell images of known FD and compared the obtained values to power spectral density (PSD) analysis. Our method is sensitive to a wider FD range (2.0-4.5), having a mean error of 1.4% compared to 6% for PSD analysis. This increased sensitivity and an ability to compute regional FD properties enabled the discrimination of the differences in radiation resistant cancer cell responses that could not be detected using PSD analysis.

20.
Biomed Opt Express ; 9(8): 3794-3804, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30338156

ABSTRACT

There is a critical need to identify patients with radiation-resistant tumors early after treatment commencement. In this study, we use diffuse reflectance spectroscopy (DRS) to investigate changes in vascular oxygenation and total hemoglobin concentration in A549 radiation-sensitive and resistant tumors treated with a clinically relevant dose fraction of 2 Gy. DRS spectra were acquired before, immediately after, 24, and 48 hours after radiation. Our data reveals a significantly higher reoxygenation (sO2) in the radiation-resistant tumors 24 and 48h after treatment, and provides promising evidence that DRS can discern between the reoxygenation trends of radiation-sensitive and resistant tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...